分类模型的结果就是计算决策面,模型训练的过程就是决策面的计算过程。在计算决策面时,SVM转化为对偶问题后,只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参与核计算(即kernal machine解的系数是稀疏的),这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算量。然而,LR算法里,每个样本点都必须参与决策面的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。所以,在具体应用时,LR很少运用核函数机制。
标签: lr、少数几个、决策、样本、面时、面试