CAP 不同场景

具体工程场景

传统数据库都是假设不保证P的,因为传统数据库都是单机或者很小的本地集群,假设网络不存在问题,出现问题手工修复。所以,损失分区容错(P)只保证CA相当于就是一个单体应用,根本不是分布式,其实在分布式出现之前都是这么搭系统,但是倘若这种系统的节点之一挂了,整个系统就直接宕掉了,不符合目前现实需求(高扩展容错)。分布式是要求单个节点故障(概率太高了)系统仍能完成运行。搭建分布式就是间接要求必须保证P,即P是现实,那C和A就无法同时做到,需要在这两者之间做平衡。

像银行系统,是通过损失可用性(A)来保障CP,银行系统是内网,很少出现分区不可达故障状态,一旦出现,不可达的节点对应的ATM就没法使用,即变为不可用。同时如果数据在各分区未达到一致,ATM也是Loading状态即不可用。

在互联网实践中,可用性又是极其重要的,因此大部分是通过损失一致性(C)来保障AP,当然也非完全牺牲一致性,使用弱一致性,即一定时间后一致的弱一致性,当数据还在同步时(WRITE之后),使用上一次的数据。

标签: atm、一致性、损失、分区、银行、面试
  • 回复
隐藏