数据集下载:
http://yann.lecun.com/exdb/mnist/
文件 | 内容 |
---|---|
train-images-idx3-ubyte.gz | 训练集图片 - 55000 张 训练图片, 5000 张 验证图片 |
train-labels-idx1-ubyte.gz | 训练集图片对应的数字标签 |
t10k-images-idx3-ubyte.gz | 测试集图片 - 10000 张 图片 |
t10k-labels-idx1-ubyte.gz | 测试集图片对应的数字标签 |
推荐资源:
完整代码:
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) for i in range(20): one_hot_label=mnist.train.labels[i,:] label=np.argmax(one_hot_label) print('mnist_train_%d.jpg label: %d' %(i,label)) x=tf.placeholder(tf.float32,[None,784]) W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) y=tf.nn.softmax(tf.matmul(x,W)+b) y_=tf.placeholder(tf.float32,[None,10]) cross_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y))) train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) sess=tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(1000): batch_xs,batch_ys=mnist.train.next_batch(100) sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys}) correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))