前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准——软件可靠性。
先看下面这种情况:有A,B两辆越野汽车,在城市的周边地区均能很好应对泥泞的路况。当一同开去穿越西藏,A车会因为西藏本地的汽油不达标,导致油路受阻无法点火,而B车顺利完成了穿越。因此我们说,B车的可靠性比A车高。
“软件的可靠性”就是考察软件在各种异常突发的情况下的应对能力。常见的软件异常有:磁盘损坏、进程意外退出、宿主机宕机等情况。
对于消息中间件来说,“可靠性”最直接的指标就是——消息数据不丢失。此外,消息不重投、服务一主多备等特性也可以用来评估可靠性。
那么Kafka和RocketMQ(以下简称RMQ)在可靠性上孰优孰劣呢?和我们走进本期的测试比拼吧!
在消息收发的过程中,分别模拟Broker服务进程被Kill、物理机器掉电的异常场景,多次实验,查看极端情况下消息系统的可靠性。
以下场景使用多个发送端向一个Topic发送消息,发送方式为同步发送,分区数为8,只启动一个订阅者。
在消息收发过程中,利用Kill -9 命令使Broker进程终止,然后重新启动,得到可靠性数据如下:
注:以上测试场景中Kafka的异步刷盘间隔为1秒钟,同步发送需设置request.required.acks=1,否则会出现消息丢失。
在Broker进程被终止重启,Kafka和RMQ都能保证同步发送的消息不丢,因为进程退出后操作系统能确保将该进程遗留在内存的数据刷到磁盘上。实验中,Kafka出现了极少量的消息重复。再次可以确定此场景中,二者的可靠性都很高。
在消息收发过程中,直接拔掉Broker所在的宿主机电源,然后重启宿主机和Broker应用。因受到机房断电限制,我们在本场景测试中使用的是普通PC机器。得到可靠性数据如下:
重新执行上面的测试,得到数据如下:
首先,设置同步刷盘时,二者都没出现消息丢失的情况。限于我们使用的是普通PC机器,两者吞吐量都不高。此时Kafka的最高TPS仅有500条/秒,RMQ可以达到4000条/秒,已经是Kafka的8倍。
为什么Kafka的吞吐量如此低呢?因为Kafka本身是没有实现任何同步刷盘机制的,就是说在这种场景下测试,Kafka注定是要丢消息的。但要想做到每一条消息都在落盘后才返回,我们可以通过修改异步刷盘的频率来实现。设置参数log.flush.interval.messages=1,即每条消息都刷一次磁盘。这样的做法,Kafka也不会丢消息了,但是频繁的磁盘读写直接导致性能的下降。
另外,二者在服务恢复后,均出现了消息重复消费的情况,这说明消费位点的提交并不是同步落盘的。不过,幸好Kafka和RMQ都提供了自定义消费位点的接口,来避免大量的重复消费。
服务端为单机部署,机器配置如下:
应用版本:
同步刷盘是在每条消息都确认落盘了之后才向发送者返回响应;而异步刷盘中,只要消息保存到Broker的内存就向发送者返回响应,Broker会有专门的线程对内存中的消息进行批量存储。所以异步刷盘的策略下,当机器突然掉电时,Broker内存中的消息因无法刷到磁盘导致丢失。
本期测试中,RocketMQ比Kafka具有更高的单机可靠性。对于普通业务,部署异步刷盘模式可以得到更高的性能;对于丢消息零容忍的业务,则更适用RocketMQ同步刷盘的模式,在享受高可靠性保障的同时,又能拥有较高的吞吐量。
实际上,单机可靠性只是软件可靠性测试的一个环节,Kafka和RocketMQ都提供了主备机模式,来解决服务器的单点故障。这点我们在后续会继续实验摸索,敬请期待接下来的比拼!