一、填空题(5分每题,一共8题)
1、两个人A(速度为a)、B(速度为b)在一直路上相向而行。在A、B距离为s的时候,A放出一个鸽子C(速度为c),C飞到B后,立即掉头飞向A,遇到A在掉头飞向B......就这样在AB之间飞来飞去,直到A、B相遇,这期间鸽子共飞行路程为?
答案是:s*c/(a+b)
2、(he)的平方=she。h、e、s代表的数字?
答案是:分别代表2、5、6
3、运算(93&-8)的结果为:88
4、将一个无序整数数组构造成一个最大堆,最差时间复杂度为:
5、int *p = &n;
那么*p的值是()
A、p的值 B、p的地址 C、n的值 D、n的地址
6、一个完全二叉树有770个节点,那么其叶子的个数为:385
7、有一个二维数组a[1...100 , 1...65]有100行,65列,我们以行序为主序,如果该数组的基地址是10000,且每个元素占2个存储单元,请问a[56 , 22]的存储地址是:17194
8、以下代码输出结果是:
输出结果是
B constructor
D constructor
BD
二、编程题
1、数组乘积(15分)
输入:一个长度为n的整数数组input
输出:一个长度为n的整数数组result,满足result[i] = input数组中除了input[i]之外所有数的乘积(假设不会溢出)。比如输入:input = {2,3,4,5},输出result = {60,40,30,24}
程序时间和空间复杂度越小越好。
C/C++:
int *cal(int* input , int n);
Java:
int[] cal(int[] input);
int *cal(int* input , int n)
{
int i ;
int *result = new int[n];
result[0] = 1;
for(i = 1 ; i < n ; ++i)
result[i] = result[i-1]*input[i-1];
result[0] = input[n-1];
for(i = n-2 ; i > 0 ; --i)
{
result[i] *= result[0];
result[0] *= input[i];
}
return result;
}
2、异形数(25分)
在一个长度为n的整形数组a里,除了三个数字只出现一次外,其他的数字都出现了2次。请写程序输出任意一个只出现一次的数字,程序时间和空间复杂度越小越好。
例如: a = {1,3,7,9,5,9,4,3,6,1,7},输出4或5或6
C/C++:
void find(int* a , int n);
Java:
void find(int[] a);
// lowbit表示的是某个数从右往左扫描第一次出现1的位置
int lowbit(int x)
{
return x&~(x-1);
}
void find(int* a , int n)
{
int i , xors;
xors = 0;
for(i = 0 ; i < n ; ++i)
xors ^= a[i];
// 三个数两两的异或后lowbit有两个相同,一个不同,可以分为两组
int fips = 0;
for(i = 0 ; i < n ; ++i)
fips ^= lowbit(xors ^ a[i]);
// 表示的是:flips=lowbit(a^b)^lowbit(a^c)^lowbit(b^c)
int b; // 假设三个只出现一次的其中一个数为b
b = 0;
for(i = 0 ; i < n ; ++i)
{
if(lowbit(xors ^ a[i]) == fips)
b ^= a[i];
}
// 成功找到三个数中一个数
cout<<b<<endl;
}
3、朋友圈(25分)
假如已知有n个人和m对好友关系(存于数字r)。如果两个人是直接或间接的好友(好友的好友的好友...),则认为他们属于同一个朋友圈,请写程序求出这n个人里一共有多少个朋友圈。
假如:n = 5 , m = 3 , r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有5个人,1和2是好友,2和3是好友,4和5是好友,则1、2、3属于一个朋友圈,4、5属于另一个朋友圈,结果为2个朋友圈。
最后请分析所写代码的时间、空间复杂度。评分会参考代码的正确性和效率。
C/C++:
int friends(int n , int m , int* r[]);
Java:
int friends(int n , int m , int[][] r);
// 简单的并查集应用
int set[10001];
inline int find(int x) //带路径优化的并查集查找算法
{
int i , j , r;
r = x;
while(set[r] != r)
r = set[r];
i = x;
while(i != r)
{
j = set[i];
set[i] = r;
i = j;
}
return r;
}
inline void merge(int x , int y) //优化的并查集归并算法
{
int t = find(x);
int h = find(y);
if(t < h)
set[h] = t;
else
set[t] = h;
}
int friends(int n , int m , int* r[])
{
int i , count;
for(i = 1 ; i <= n ; ++i) //初始化并查集,各点为孤立点,分支数为n
set[i] = i;
for(i = 0 ; i < m ; ++i)
merge(r[i][0] , r[i][1]);
count = 0;
for(i = 1 ; i <= n ; ++i)
{
if(set[i] == i)
++count;
}
return count;
}