淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下还有诸多特性不满足,为此我们重新用Java语言编写了RocketMQ,定位于非日志的可靠消息传输(日志场景也OK),目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。
总结:RocketMQ的同步刷盘在单机可靠性上比Kafka更高,不会因为操作系统Crash,导致数据丢失。Kafka同步Replication理论上性能低于RocketMQ的同步Replication,原因是Kafka的数据以分区为单位组织,意味着一个Kafka实例上会有几百个数据分区,RocketMQ一个实例上只有一个数据分区,RocketMQ可以充分利用IO组Commit机制,批量传输数据,配置同步Replication与异步Replication相比,性能损耗约20%~30%,Kafka没有亲自测试过,但是个人认为理论上会低于RocketMQ。
总结:Kafka的TPS跑到单机百万,主要是由于Producer端将多个小消息合并,批量发向Broker。RocketMQ为什么没有这么做?
RocketMQ使用长轮询,同Push方式实时性一致,消息的投递延时通常在几个毫秒。
卡夫卡消费失败不支持重试。
总结:例如充值类应用,当前时刻调用运营商网关,充值失败,可能是对方压
力过多,稍后再调用就会成功,如支付宝到银行扣款也是类似需求。
这里的重试需要可靠的重试,即失败重试的消息不因为Consumer宕机导致丢失。
MySQL的二进制日志分发需要严格的消息顺序
RocketMQ支持两类定时消息
卡夫卡不支持分布式事务消息
阿里云MQ支持分布式事务消息,未来开源版本的RocketMQ也有计划支持分布式事务消息
卡夫卡不支持消息查询
RocketMQ支持根据消息标识查询消息,也支持根据消息内容查询消息(发送消息时指定一个消息密钥,任意字符串,例如指定为订单编号)
总结:消息查询对于定位消息丢失问题非常有帮助,例如某个订单处理失败,是消息没收到还是收到处理出错了。消息回溯
卡夫卡理论上可以按照偏移来回溯消息
总结:典型业务场景如consumer做订单分析,但是由于程序逻辑或者依赖的系统发生故障等原因,导致今天消费的消息全部无效,需要重新从昨天零点开始消费,那么以时间为起点的消息重放功能对于业务非常有帮助。消费并行度
RocketMQ消费并行度分两种情况
卡夫卡不支持消息轨迹
阿里云MQ支持消息轨迹
卡夫卡采用斯卡拉编写
RocketMQ采用的Java语言编写
卡夫卡不支持代理端的消息过滤
RocketMQ支持两种代理端消息过滤方式
理论上Kafka要比RocketMQ的堆积能力更强,不过RocketMQ单机也可以支持亿级的消息堆积能力,我们认为这个堆积能力已经完全可以满足业务需求。
开源社区活跃度
RocketMQ在阿里云已经商业化,目前以云服务形式供大家商用,并向用户承诺99.99%的可靠性,同时彻底解决了用户自己搭建MQ产品的运维复杂性问题
卡夫卡在日志领域比较成熟