1.使用许多策略去防止过拟合,如:正则化项、Shrinkage and Column Subsampling等。
2. 目标函数优化利用了损失函数关于待求函数的二阶导数
3.支持并行化,这是XGBoost的闪光点,虽然树与树之间是串行关系,但是同层级节点可并行。具体的对于某个节点,节点内选择最佳分裂点,候选分裂点计算增益用多线程并行。训练速度快。
4.添加了对稀疏数据的处理。
5.交叉验证,early stop,当预测结果已经很好的时候可以提前停止建树,加快训练速度。
6.支持设置样本权重,该权重体现在一阶导数g和二阶导数h,通过调整权重可以去更加关注一些样本。
上一题:常用的损失函数有哪些?
下一题:介绍一下GBDT的基本原理
标签: 导数、权重、并行、二阶、分裂
笔试题
刷题
简历模板
AI算法
大数据
内推
内推: