什么是过拟合?如何解决过拟合

过拟合直观的解释:

随着训练过程的进行,模型复杂度,在training data上的error渐渐减小。可是在验证集上的error却反而渐渐增大——由于训练出来的网络过拟合了训练集,对训练集以外的数据却不work。


防止过拟合的方法有:

1.正则化(Regularization)(L1和L2)

2.数据增强(Data augmentation),也就是增加训练数据样本

3.Dropout

4.early stopping

参考:怎么解决过拟合与欠拟合

更多精选文章
标签: 拟合、训练、渐渐、error、data
一个创业中的苦逼程序员
笔试题


刷题


简历模板


AI算法


大数据


内推


推荐阅读:
阿里巴巴笔试面试大全
腾讯笔试面试大全
百度笔试面试大全
今日头条笔试面试大全
网易笔试面试大全
Google笔试面试大全
更多笔试面试大全
隐藏