spark调优比较复杂,但是大体可以分为三个方面来进行
1)平台层面的调优:防止不必要的jar包分发,提高数据的本地性,选择高效的存储格式如parquet
2)应用程序层面的调优:过滤操作符的优化降低过多小任务,降低单条记录的资源开销,处理数据倾斜,复用RDD进行缓存,作业并行化执行等等
3)JVM层面的调优:设置合适的资源量,设置合理的JVM,启用高效的序列化方法如kyro,增大off head内存等等
./bin/spark-submit \
--master yarn-cluster \
--num-executors 100 \
--executor-memory 6G \
--executor-cores 4 \
--driver-memory 1G \
--conf spark.default.parallelism=1000 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3 \
Spark性能优化指南——基础篇(强烈推荐)
标签: spark、调优、conf、memoryfraction、层面
笔试题
刷题
简历模板
AI算法
大数据
内推
内推: